Universidade de Aveiro

Alexandre Ribeiro
Guilherme Amorim
Matilde Teixeira
Rafael Ferreira
Rodrigo Graca

2024

Relatério Técnico: DiseaseCard - Sistema de
Visualizacao e Agregacao de Doencas Genéticas
Raras

Technical Report: DiseaseCard - Visualization and
Data Aggregation System for Rare Genetic Diseases

Universidade de Aveiro

Alexandre Ribeiro
Guilherme Amorim
Matilde Teixeira
Rafael Ferreira
Rodrigo Graca

2024

Relatério Técnico: DiseaseCard - Sistema de
Visualizacao e Agregacao de Doencas Genéticas
Raras

Technical Report: DiseaseCard - Visualization and
Data Aggregation System for Rare Genetic Diseases

“Lack of knowledge - that is the problem.”

— W. Edwards Deming

Universidade de Aveiro
2024

Alexandre Ribeiro Relatério Técnico: DiseaseCard - Sistema de
Guilherme Amorim Visualizacao e Agregacao de Doencas Genéticas
Matilde Teixeira Raras

Rafael Ferreira

Rodrigo Graca
Technical Report: DiseaseCard - Visualization and

Data Aggregation System for Rare Genetic Diseases

Documento apresentada em Engenharia Informatica da Universidade de Aveiro
para cumprimento dos requisitos necessarios a conclusdo da unidade curricular
Projeto em Informética realizada sob a orientacdo cientifica do Doutor (Jo3o Rafael
Almeida), Professor associado do Departamento de Eletrénica, Telecomunicacdes e
Informética da Universidade de Aveiro, e do Doutor (José Luis Oliveira), Professor
catedratico do Departamento de Eletrénica Telecomunicacdes e Informéatica da
Universidade de Aveiro.

Dedicamos este trabalho ao nosso orientador, pela paciéncia e orientacdo
dados ao nosso grupo.

agradecimentos /
acknowledgements

Agradecemos toda a ajuda a todos os nossos colegas. A todos os que nos con-
seguiram ajudar em qualquer uma das fase do nosso projeto: quer na recolha de
requisitos, ou nos testes de usabilidade. Agradecemos ainda a paciéncia e orien-
tacdo dadas pelo professor regente da cadeira de Projeto em Informética, Prof.
Doutor Osvaldo Pacheco e pelo aluno de Mestrado em Engenharia Informatica
Daniel Ferreira.

Por dltimo, mas ndo menos importante, queremos agradecer aos nossos trés orien-
tadores: Prof. Doutor Jodo Almeida, pela paciéncia ao gerir este projeto, ao Prof.
Doutor José Luis Oliveira e ao investigador Tiago Almeida.

Palavras Chave

Resumo

Doencas Raras, Integracdo de Dados, Base de Dados Doencas Raras, Agregacdo
de Dados

O contexto atual da saiide e da investigacdo médica exige constante inovacido e
avancos tecnolégicos e, para atender a essas necessidades, sao essenciais sistemas
capazes de se adaptar aos avancos tecnolédgicos e a crescente disponibilidade de
dados. Diseasecard, desenvolvido na Universidade de Aveiro, e publicado em
2003, teve como objetivo agregar conhecimentos genéticos e médicos, a partir
de informacdes espalhadas por varias fontes on-line e fornecer analises. Com a
necessidade de novas atualizacBes, devido a evolucio continua da visualizacio de
dados e das tecnologias, surgiu a oportunidade de desenvolver um sistema mais
eficiente do que o existente. Portanto, neste projeto propde-se o desenvolvimento
de uma nova solucdo para substituir o Diseasecard.

Keywords

Abstract

Rare Diseases, Data Integration, Rare Disease Database, Data Aggregation

The current context of healthcare and medical research demands constant
innovation and technological advancements and, to meet these needs, responsive
systems capable of adapting to technological advancements and the increasing
availability of data are essential. Diseasecard, developed at the University of
Aveiro, and published in 2003, aimed to aggregate genetic and medical information
scattered across various online sources and provide analysis. With the need of
updates in the system, due to the continuous evolution of data visualization
and technologies, the opportunity to develop a more efficient system has arisen.
Therefore, in this project, it is proposed the development of a new software in order
to replace Diseasecard.

|[Lista de Figuras|

1.1 [DiseaseCard Problems|

I1.1.2 Improvements on Diseasecard to elaborate on next topic|

T2

Objectives|

215 HGNC

12.2.1 Orphanet|
2.2.2 Malacardsl

223 DOlo
224 GARDI.
225 NORDI...............

2. 1.1 OMIM . . . oo

Conteudo

vii

=W W W Ny =

o W o N N 99 9 o o o oo o ottt oot »

2.5 Comparison Matrix|o e 9

13 System Analysis Requirements| 11
[3.1 Requirements Gathering|o 11
[3.2 Functional Requirements| L 11

3.2.1 Comprehensive Disease Information per Source| 11
3.2.2 Flexible and Accessible Search Capability for Diseases| 11
13.2.3 Versatile Source Oriented and Article Oriented Searchl 12
3.2.4 Daily Information Updates], 12

3.2.5 Disable or Enable Article and Source for Maintenance Oversight for Administrator| 12

3.2.6 Real-Time System Information for Administrator| 12
327 Accessible CRUD Methods for Administratod 12

13.2.8 Graphical System Representation for Administrator] 12
[3.2.9 Secure Administrative Authentication for Administratorf 13

BB ACKOrS. 13
B3I _Userl 13
B2 Adminl - - - o o o o 13

BA Personasd 13
BAT Tsedo 13
B.42 Main Adminl.o 14
B43 Medical Adminlo oo 14

BE WUseCased. 14
[3.6 Non-functional Requirements| L o 15
3.6.1 Modular Architecture for Feature Expansion|. 15
3.6.2 Ease of Deployment| o 0o 16
[3.6.3 Accessibility (All users including colourblind)[. 16
[3.6.4 Cross-Platform Accessibility (Mobile and Web)[. 16
13.6.5 Rapid Information Retrieval 16
3.6.6 Low Latency| 16
13.6.7 Scalability for Growing Disease Base| 16

[3.7 Visual Identity] 17
4 Domain Model, Architecture and Deployment Diagram)| 19
41 Domain Modell 19
4.1.1 Disease Family|o 20
EI2 " Diseasd. 20
ET3S0urcd - v v oo e 20
EIZATUCdo 20

ii

416 Feedbackl 20

4.2 System Architecture|. 21
4.2.1 Primary Architecture|f. Lo 21
4.2.2 Secondary Architecture| L Lo 21
4.2.3 Third Architecturelo oo 22

4.3 APT Documentationl 23
E3T AdmIl . . - o oo 23
4.3.2 Authentication| 24
4.3.3 Disease Family| 24
E3d _Diseasel.o 24
E3E Sourcel . . . oot 24
E36 ATGcld 24
437 Feedbackl 25

4.4 Web Scraping] e 25
441 Initial Methodl oo oo 25
4.4.2 Improved Method|. 27
4.4.3 Temporary Method|. oo 28

4.5 Aggregation Algorithm| L oo 29
4.6 Data Security] L e 30
4.6.1 Role Based Access Controll. L 30

4.7 Deployment Architecturel oL 30
6 Results 33
b1 Diseasecardl. 33
p.1.1 Homepage| 33
.1.2 Browse Page|] 34
p.1.3 Disease Family Page| o oo 35
p.1.4 Article Pagel oo 37
b.1.5 Feedback Option| 37

0.2 DiseaseCard Adminl L 41
9.2.1 DashBoard| o 41
p.2.2 Manage Datal o 42
p.2.3 Monitorize Endpoints|o o 42
p.2.4 Manage Medical Admins|. Lo oo 43
0.2.5 Medical Admin Viewl L oL 43

b.3 DiseaseCard APp|l . - - « v o o o e e e e e 44
B.3.1 Disease Searchl L 44

iii

033 Article Viewl. oL o 45

5.4 SUIMIMNATY| « « « v v v v e 45

|6 Analysis of Results and Future Works| 47
[6.1 Project Summary| e e 47
6.2 Features and Benefits of the Productl 47
6.5 Dimitations of the Productl oo oo 48
B3I Sources . . . oo oo 48

[6.4 Potential Future Improvements|. oo o 48
64T Client-Sidel 48

642 Admin-Sidel 49

6.4.3 Back-end Related| o o 49
[Referéncias] 51

iv

Lista de Figuras

(3.1 Emily Watson - User| 13
[3.2 Charles Sterling - Main Admin| L oo 14
[3.3 George Stevens - Medical Admin| Lo L oL 14
[3.4 Use Cases Diagram| e 15
4.1 Domain Model Diagram|. 19
[4.2 Enterprise Architecture| 22
[4.3 Admin Controller (1)| 23
[4.4 Admin Controller (2)] e 23
4.0 _Authentication Controller oo oo 24
[4.6 Disease Family Controller| 24
47 Disease Controller] o 24
4.8 Source Controller] 24
4.9 Article Controllerl o 25
[4.10 Feedback Controller] 25
[4.11 OQOutdated Scraping Process| 27
[4.12 Scraping Process| 28
[4.13 Algorithm Sequence Diagram|. 30
[4.14 Deployment Diagram| Lo 31
[b.1 Homepage| e 34
0.2 Browse Pagel 34
[0.3 Bubble Graph| 35
(5.4 Hypertree Graph|. e 36
b5 Accordion Listl o . L L 36
0.6 Article Pagel e 37
b7 Disease Feedbackl. oo 38
[5.8 Disease Family Name Not Correct| 38
5.9 Disease in Wrong Family| o 39
.10 Article Feedbacklo o o 40

.11 Article in Wrong Disease| L 40

.12 Empty Article]o 41
BEI3 DashBoard Adminl 41
[5.14 Admin Feedback Acceptance/Refusal Page] 42
P-15 Admin Endpoint Monitoring Page|o oo 42
9.16 Medical Admins Management Page| 43
517 Medical Admin Viewl 43
518 Disease Searchl oo oo 44
0.19 Disease Infol o 45
10.20 Article View]o 45

vi

[2.1 Comparison Matrix|

Lista de Tabelas

vii

CAPITULO

Introduction

"Knowing but lacking the power to express it is mo better than mever having any ideas."-

Pericles

A rare disease is a health condition that affects a small number of people compared with
other prevalent diseases in the general population [1]. Data regarding this condition can vary
throughout different environments, such as Europe or the United States. As a matter of fact,
in the European Union, it affected no more than one person in 2000 [2]. In contrast, in the
United States, it affects 25 to 30 million adults (approximately 1 in 11 people) [3].

When viewing the rare genetic disease data, the results are even lower, with 1 in 50
individuals in the European general population being affected [4][5]. Even though the numbers
are low, upon further investigation, these conditions not only affect the patient’s physical
and mental health but also have repercussions on their economic well-being due to the late
and lack of information known by professionals when diagnosing, a consequence of the scarce
number of cases [6]. This diagnosis can often be wrong, derived from the reasons shown above,
with 50 % of patients not even receiving a diagnosis [7] [§].

Some initiatives have been started towards funding and improving investigations [9]. One
initiative is IRDiRC E], that count with currently more than sixty members from across the
globe, whose goal is to spread awareness towards these cases and to foster collaborative
research on these topics [10] [11].

As a possible solution to the problem, several platforms were developed, such as the
National Organisation for Rare Disorders (NORD), OMIME] and Malacards, which are widely
used to search for disease information. Each contains a well-defined list of diseases and large
amounts of data for each one. This data includes genes, proteins, symptoms, enzymes, and
other related information. Although these services portray information from many diseases,

the information is scarce and spread across various pages.

'nternational Rare Disease Research Consortium (https://irdirc.org/)
20MIM: Online Mendelian Inheritance in Man- a database that catalogues information about genetic rare
diseases.

These platforms, which will be thoroughly analyzed in the following chapter, often need a
more user-friendly experience and must be updated and prepared for the current technological
landscape. In this search to unify knowledge and offer a better understanding to the user,
DiseaseCard emerged. This service was first developed by the bioinformatics department in
IEETA E| in 2003, but it suffered some modifications over the years. However, over the last

five years, no improvements have been made.

1.1 MOTIVATION

The previous version of DiseaseCard was a platform for the visualization of data available
across various pages/services that presented information for rare diseases. It counted with a
client-side page for searches and an admin dashboard to monitor endpoints and their related
data |12].

For this to be possible, it utilized parsers for every service, using an RDF E| triplet structure.
It used these frameworks to access COEUS, a semantic web framework to map SPARQL
query results, directly to one specific ontology or more. To obtain the information from the
different ontologies present, such as Omim, CSV and XML, and to give access to those other
sources and articles, the parsers were used. [13]. Its architecture was based on this framework,
using three databases: MySQL, Redis and SoLR. The first to store the triplet information
for the different ontologies, Redis as a cache mechanism to facilitate searching and SoLR. to
improve the fetching time for the present data.

It also counted with several backend core components, such as a Data Collector, Data
Connector, Browser Component, Cashier’s, Index, Controller and AlertBox.

Firstly, the Data Collector, was used to ensure a correct connection to the RDF model
that DiseaseCard implements. The Data Connector modeled the set of entities that perform
requests to the API. This acted as a bridge between the requests and the possible operations
that can be performed. A Browser component whose aim was to store the various diseases’
names alphabetically in cache and map it to the disease’s name.

A Cashier’s whose purpose was to associate the OMIM with a list of tuples containing
various identifiers and names of the sources containing the OMIM. An Index component that
aggregates disease names with the sources to guarantee performance. A Controller, who has
two separate modules, communicates with the service through a Web Socket to allow access
to a REST API. The last component was an AlertBox, which presented information about
the endpoints, namely when they failed.

One part worth mentioning is that this website presented a way to update the websites it
cached information from by modifying the parser in the DCadmin interface. It also counted
with the use of Redux, a framework that allows the creation of reusable components and

implements large web applications, allowing a refresh-free data update.

3Institute of Electronics and Informatics Engineering of Aveiro (https://www.ieeta.pt/)
4Resource Description Framework

1.1.1 DiseaseCard Problems

This platform presented some problems. The first aspect is its usability. In the graph view,
the principal and leaf nodes were presented by numbers instead of names, which professionals
can perceive wrongfully.

Another problem happens when searching for a determinate article. The previous version
of DiseaseCard showed an I frame of the article on the source’s website. Due to the constant
changes in these websites, much information is now not accessible through the same links,
which shows an error to the user.

Another issue was the dispersed disease data: when the user searched for a determinate
disease, it showed every appearance of the respective characters in every article. For example,
when searching for diabetes, every single appearance of diabetes appeared even in cardiac
arrest articles.

By doing this, the user could not perceive what information the disease searched had
associated with and its related diseases. Beyond this, the above-said diseases were not
aggregated by a family, presenting their information separately and not providing a central
concept for the disease. Therefore, the data was broadly spread, causing errors in common
usage.

On top of all, our goal in improving this platform was to use modern frameworks and
technologies to build a maintainable architecture open to possible modifications. With this in
mind, we utilized different frameworks and abandoned utterly the use of RDFs, SPARQL,
and COEUS, whose usage was done since the start of the said project, aiming to simplify the

possible changes this project may be open to in the near future.

1.1.2 Improvements on Diseasecard to elaborate on next topic

With that said, the primary purpose of our work is to make the platform more accessible
to the user by using standard nomenclature and aggregating the diseases into a disease family.
The creation of families was relevant due to the spread of disease data of related diseases.
With this, the user can explore the different diseases in a family and explore its various sources
and articles. The user can now search while knowing exactly which article or source they

want to visit by title. By doing this, it provides the user with a better experience.

1.2 OBJECTIVES

The aim of this project is to improve the live view of the articles and information the
website presents about a specific disease. With this in mind, we want to get the article content
by using web scrappers to gather the source’s HTML and then display it on our platform, not
using I-Frame. This approach will make the website much cleaner, accessible, disease-oriented,
and updated. The website will also not have so many articles that cannot be accessed due to
the ever-changing platforms from which the I-frame was gathering the information.

Another relevant aspect is the abandonment of previously used technologies, such as
a triplet structure of RDFs, SPARQL queries, and COEUS, the semantic framework used

3

to aggregate that. By not implementing that, we bring modernity to this platform and
make it more accessible to future modifications, given that it is more easily understood and
interchangeable.

To innovate, we aim to build a mobile app. The idea of mobile development surged. This
was due to the generality of the population that uses their cell phone more often to access
information instead of a website.

With this change, we hope to provide information in a broader format and be the first
from its state of the art. It is important to note that given its smaller display area, it will
only present a small portion of data. The About Me page states that the complete data can
be accessed through the website.

In sum, the main purpose of this document is to address these issues:

e Implement a solution with the information presented concisely and properly for every

user to be capable of acceding it

e Build a completely different Diseasecard from scratch using newer technologies

o Create an accessible way for admin usage and easy monitoring of the system

e Create a different form of access for the general user through a mobile app

1.3 OUTLINE

This document contains five more chapters. The second one aims to delve into the state
of the art, exhibiting the existing platforms and portraying an insight into what should be
improved. In this chapter, we will analyze the databases and services available in the market.

In Chapter 3, we will present the requirement gathering, functional requirements, actors
used to portray the service’s use, use cases for these actors, and nonfunctional requirements.
In Chapter 4, the Domain Model will be addressed and its various versions, the choice of
Architecture and its different setbacks, and the Deployment Diagram.

In Chapter 5, we will show the results and a brief summary. In Chapter 6, we will discuss

the system obtained and possible improvements in the future.

CAPITULO

Context and State of Art

This chapter will explore the databases and tools that provide access to different disease
information. This is essential to understanding the possible obstacles we must overcome to

innovate and make the necessary changes.

2.1 EXISTENT DATABASES

2.1.1 OMIM

OMIM, short for Online Mendelian Inheritance in Man, is a comprehensive and authorita-
tive collection of human genes and genetic phenotypes that is freely available and updated
daily, published in 1985 as an effort of the NCBI to bring the MIM book editions to an online
format. It has both an option to be downloaded or accessed through an API.

Unlike primary data databases, OMIM synthesizes and summarizes new and essential
information based on the literature review. It is authored and edited by Dr Ada Hamosh at
the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine.

2.1.2 PubMed

They were published a decade after OMIM as a new NCBI project to provide an interface
to the MEDLINE database. PubMed Central is a full-text biomedical and life sciences journal
literature archive at the U.S. National Institutes of Health’s National Library of Medicine
(NIH/NLM). It was redesigned for the last time in 2020, improving its last update in 2009.

2.1.3 HGNC

The HGNC is responsible for approving unique symbols and names for human loci,
including protein-coding genes, ncRNA genes, and pseudogenes, to allow unambiguous scientific
communication.

The rise of problems with nomenclature in human genetics was recognized in the early
1960s, and in 1979, full guidelines for human gene nomenclature were presented at the

Edinburgh Genome Meeting.

One problem is the compromise between convenience and simplicity for everyday human
use and the need for an adequate definition of the concepts involved. Starting in 1996, HGNC
stores all approved symbols in the HGNC database, ensuring that each gene is unique.They

are currently storing a total of forty-three thousand symbols.

2.1.4 UniProt

UniProt, or The Universal Protein Resource, is a comprehensive protein sequence and
annotation data resource. It controls the following databases: UniProtKB (UniProt Knowled-
gebase), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc).

Over 100 people are actively involved in the project, which is still actively maintained
as a collaboration between the European Bioinformatics Institute, the Swiss Institute of

Bioinformatics, and the Protein Information Resource.

2.1.5 Ensembl

The Ensembl project, which started in 1999, gained life as the need for automatic genome
annotation became increasingly urgent.

The project also added the possibility of integrating these annotations with other available
biological data and making all this publicly available via the web. By 2020, the project
supported over fifty thousand genomes across its two websites (Ensemble and Ensemble

Genomes).

2.1.6 GenBank

GenBank is the NIH genetic sequence database. There, we can find a collection of all
publicly available DNA sequences. GenBank has new releases every two months with detailed
information about the release and notification of upcoming changes to GenBank.

Since most data comes directly from individual submissions, including researchers, some

content may have been copyrighted by their submitters.

2.2 EXISTENT TOOLS

2.2.1 Orphanet

Orphanet provides reference information and knowledge to all actors in the rare disease
ecosystem. In particular, It has created and maintained the rare disease nomenclature, which
serves as a common language for medical professionals, researchers, and decision-makers
worldwide.

With an acceptably good interface, Orphanet allows us to perform a wide range of tasks,
the most obvious being searching and reading information about a disease. It also allows us
to perform an advanced search, such as searching for a specific OMIM or gene symbol.

The autocomplete functionality is implemented but only sometimes works as desired. They

also have functionality that allows searching for other information, like news and treatments.

2.2.2 Malacards

MalaCards is an integrated searchable database of human maladies and their annotations,
modelled on the architecture and richness of the GeneCards databases of human genes.

Each card contains detailed information about a specific disease, including its aliases,
classifications, anatomical context, drugs and therapeutics, expression, genes, genetic tests,
pathways, publications, related diseases, sources, summaries, symptoms and phenotypes, and
variations. It has 22811 disease entries, consolidated from 75 sources.

One aspect worth mentioning is Malacards’ need for better UIX. The front page could
be more or appealing to the human eye. They also support all basic operations, although

advanced search and auto-complete need to be revised.

2.2.3 DO

The Disease Ontology(D.O.) has been developed as a standardized ontology for human
disease.

Its purpose is to provide the biomedical community with a consistent, reusable, and
sustainable description of human disease terms, phenotype characteristics, and related medical
vocabulary disease concepts through collaborative efforts of biomedical researchers coordinated
by the University of Maryland School of Medicine.

D.O’s main objective is to provide an open-source ontology as a genomic resource for
integrating biomedical data associated with human disease, disease features, and mechanisms.
It also serves as a reference framework for multiscale biomedical data integration and analysis,
strengthening the disease information ecosystem.

Disease Ontology is a flawed system, even with a good home page. Getting to the search bar
could be more intuitive as it is hidden behind the Disease Ontology button in the menu. Once
there, we find an outdated interface with unexpected behaviour. The lack of auto-complete

and a basic disease summary also discourages further use.

2.2.4 GARD

GARD is an NIH program that provides free access to reliable, easy-to-understand
information about genetic and rare diseases.

Genetic and Rare Diseases (GARD) emphasize translational science, a field dedicated to
turning laboratory, clinic, and community observations into innovations to improve public
health.

GARD’s website is well-maintained and filled with numerous functionalities. Nonetheless,

it lacks essential tools, like advanced search or related diseases.

2.2.5 NORD

NORD, or National Organization for Rare Diseases, is a non-profit organization that
studies rare diseases. It has a dedicated database for this purpose. NORD aims to improve
individuals’ lives by increasing care, studies, and coverage of rare diseases through various

initiatives and projects.

The website U.I. could be improved, where it makes the customer experience hard but
offers selection by disease (that often does not work) and for selection in the disease report.
This report also provides an option to print the report as a whole. Results are given in

different languages and shown randomly in the search process.

2.2.6 NCBI

NCBI, short for National Center of Biotechnology Information, has contributed to the
NIH mission of 'uncovering new knowledge’ by pioneering on many fronts.

Understanding modern molecular biology, from an alphabet of four letters representing
chemical subunits to unravelling these into new "words and phrases,"is a central focus of
molecular biology. The staggering volume of molecular data and its cryptic and subtle patterns
have required computerized databases and analysis tools.

Therefore, the NCBI has accepted the challenge of finding new approaches to dealing with
the volume and complexity of data and providing researchers with better access to better
tools to advance understanding of our genetic legacy and its role in health and disease.

NCBI’s webpage has many search options and provides results from different databases
regarding genes, literature, proteins, clinical, and pubchem. However, how the information is
presented to the user is awful and confusing. It does not have autocomplete and has rather

complicated and unnecessary search mechanisms, such as an advanced search builder.

2.3 PREvVIOUS DISEASECARD VERSION

The previous DiseaseCard version was a platform aggregating disease information from
various sources. The website used a live-view feature to display source information. However,
this feature is not available for most articles due to the constant updates and changes to the
website.

Another aspect worth mentioning was the website’s accessibility. When searching for a
disease, the results were from every appearance within the platform. Furthermore, when
viewing a disease, the way its corresponding articles were presented induced confusion because
they were presented as numbers rather than titles. The platform also had the option to search

all the diseases and see the associated OMIM and concepts.

2.4 SUMMARY

In sum, a wide range of databases and tools for this type of service have emerged with
the evolution of technology and data processing. They represent a crucial role in searching,
discovering, and comprehending multiple rare genetic diseases through their access to multiple
sources, related articles, and other related information.

These platforms offer information, from genetic sequence to literature, like OMIM, PubMed,
GenBank, or even specific disease information, that facilitates research and collaboration
between health professionals and researchers. Within this range, we can identify problems
such as usability issues that make general use decay and lack of actualization issues that

produce the same effect.

2.5 COMPARISON MATRIX

The following matrix illustrates the many differences between the abovementioned databa-
ses and tools. Our evaluation was based on two main factors: functional and technical.

Within functional, we analyzed seven different aspects: if there is a disease summary for
every disease presented (Disease Summary), the capability and efficiency of the search
mechanism (Search), the capability of search selecting advanced parameters such as different
filters (Advanced Search) if a functional auto-complete system is provided to help the
user in the search for diseases (Auto-complete) if there were disease categories, indicating
different ranges of the disease (Disease Categories), and presents information of other
diseases that were related with (Related Diseases). Some diseases’ symptoms were present
in some services (Symptoms).

Regarding technical aspects, we analyzed three fundamental elements: Number of
sources, number of diseases, number of articles, the degree of usage each user interface
had (User Interface) and whether they had or not a mobile app (Mobile).

In the following table, we present the results of this gathering using the following symbols:

e v - this symbol represents that the feature is implemented

o ! - this symbol represents that the feature is implemented but not functional

e X - this symbol represents that the feature is not implemented at all

Tabela 2.1: Comparison Matrix

A

X

X

X

X

X

O[O

JU[OIXG]

PooH

u(O)

PooH

POoH

prd

o[qLI9,

PooH

310

90RJI9YUT I9S()

076 OTT

000 4

UMOUNU()

00¢ T

968 6

uUMOuNUu)

ore 71

000 000 L€

705 6

SOOI JO IqUUILN

708 6

000 T

UMOUNU)

00¢ T

968 6

UMOUNU)

ore 71

V/N

705 6

SOSBISI(JO IoqUILN

¢

]
(o]

UMOUNU)

UMOUU()

17e

061<

UMOUU()

$92INO0G JO IoqUUINN

1D2UYI T,

swojdwAg

SOSBISI(] POYRRY

SOLI0Z01e) 9SeOSI(]

9erduoo-ony

0IBG PIOURAPY

I EREEETY

SIS IS SIS S S

I o e ol

PN [P [PPSR

NS [P S

NSNS S S [

= S PSS [

SIS =SS S

o I I N el ol

N A [l R R [

Arewrung 9seasI(]

[DUOLIOUT]

pIeDdseasI(] ()

pIeDaseasI(]

IdON

JHYON

agvo

ABo1oyu() aseasI(]

SpIede[RI

pouwqndg

wru()

syoedsy

CAPITULO

System Analysis Requirements

Gathering functional actors, use cases and non-functional requirements.

3.1 REQUIREMENTS GATHERING

To build a better service that will be used by many people, we recurred to requirements
gathering to perceive the principal pains our desired user could have and the features required
to address them. By understanding their challenges and desires, we aimed to craft a platform

that not only addresses their needs but exceeds their expectations.

3.2 FUNCTIONAL REQUIREMENTS

Examining the process to extrapolate requisites presented in the previous chapter highlights
the essential practical standards that the system must have. These criteria play a vital role in
specifying the changes needed to transform Diseasecard into a more user-friendly and efficient

platform to support greater public use.

3.2.1 Comprehensive Disease Information per Source

As said before, one of Diseasecard ’s goals is to aggregate different sources with information
about the same disease. By implementing this, the final user will be able to access all
information about the disease. This is done by navigating through the different sources
presented, allowing a more enjoyable and accessible experience by getting all the information

online.

3.2.2 Flexible and Accessible Search Capability for Diseases

One of Diseasecard ’s problems is the search mechanism. How it is implemented now shows
all sources with a piece of information that has been searched. The result is an aggregation of
all appearances of the disease name, only showing different appearances of the word, part of

the word search, or even other sources of the same information.

11

By using the website the way it was, the user was left disoriented about which source it
had accessed. Therefore, we aim to centralize the information about the disease in one search

option, allowing the user to have a more accessible use.

3.2.3 Versatile Source Oriented and Article Oriented Search

The previous version of Diseasecard already possessed this feature; however, it was no
longer accessible to users because of the complicated terminology used. This resulted in
users getting lost in the course of searches. Our objective is to give this information more

transparently, ensuring that anyone can easily access and use it.

3.2.4 Daily Information Updates

One of the main problems in the previous version of Diseasecard is outdated information,
with some articles missing and others altered since the last update. As a result, we will update
it regularly to address the issue, ensuring missing articles are introduced and any alterations

are promptly meditated, thereby preserving consistency.

3.2.5 Disable or Enable Article and Source for Maintenance Oversight for

Administrator

Monitoring the different endpoints is essential for providing a fully functional service. By
observing user feedback and related information we can infer if a website has been hacked or
if the articles it presents start showing wrongful data. By having this feature, the admin can

disable a determinate article or source.

3.2.6 Real-Time System Information for Administrator

Performing real-time assessments on outside endpoints is essential to ensure the accuracy
of the cited content material. Engaging in continuous verifications, we acquire up-to-date
data about the various endpoints, contributing to maintaining the service’s integrity. This

ongoing monitoring strategy is vital for maintaining the system’s accuracy and reliability.

3.2.7 Accessible CRUD Methods for Administrator

As a health service-related platform, accuracy and reliability are crucial, and even so,
administrators should be able to manage data effectively. This consists of the ability to delete
faulty records, update resources or articles when errors arise, retrieve data from the platform,
and add new information, sources or articles as needed. Moreover, administrators can
manipulate the device, enabling them to actively manage and ensure the website’s content’s

accuracy and quality.

3.2.8 Graphical System Representation for Administrator

To provide a comprehensive system assessment, we will implement a dashboard allowing
entry to the above usages. This dashboard will function as a centralized hub, empowering
administrators to efficiently control and screen diverse factors of the platform in an accessible

interface.

12

3.2.9 Secure Administrative Authentication for Administrator

For a safer dashboard, we plan to implement admin authentication. By implementing this

approach we secure sensitive data from general usage, ensuring security.

3.3 ACTORS

To analyze the usage of our service we will define actors and personas, for a more authentic
approach.
3.3.1 User

The primary user is a healthcare professional who wants to use Diseasecard to search for
disease information.

3.3.2 Admin

The admin has access to the administrative platform and maybe, or maybe not, someone
from the health area since there are two types of administrator: a medical admin, who has
permission to verify and accept changes related to medical data; a main admin, who apart
of the medical permissions, can, as well, monitor and manage endpoints. For example, he

may turn off an article endpoint or all the endpoints from some data source.

3.4 PERSONAS

3.4.1 User

Emily Watson is 23 years old and studies Medicine at

this-person-does-not-exist.com

Oxford University. She wants to use Diseasecard because of
her research work about Diabetes, so she pretends to read

many articles about the many types of Diabetes.

Figura 3.1: Emily Watson -
User

13

3.4.2 Main Admin

Charles Sterling is 46 years old, has a master’s degree in
Software Engineering and is the head of Diseasecard. He
desires to access the administrative platform to add the most
recently hired "medical admin", George Stevens, to the sys-

tem.

Figura 3.2: Charles Sterling -
Main Admin

3.4.3 Medical Admin

George Stevens is 67 years old. He has been a medic his
whole life, and now that he is retired, he was offered a part-
time position to manage Diseasecard diseases data. He wants
to use the platform to check the feedback proposed by the

users and accept the ones he agrees with.

Figura 3.3: George Stevens -
Medical Admin

3.5 USsE CASES

So, the generic user uses the system to search for information about a disease. He may
do that by searching directly for the disease name in the homepage search bar or browsing
through all diseases available, applying filters on the browse page. After these, the user
accesses the information about the disease and has three ways to visualize the data: in a
graph, tree, or list. In one of these components, the diseases belonging to the disease family
chosen are presented to the user, and many articles from many data sources for each disease
are presented that the user can open and read.

About the admin, technically, there are two different types of admin: the main one, which
is the only person who can access all administrative functionalities, and the medical admin,
which can be assigned to more than one person, to have access to filtered functions of the
admin. At first, we did not make use cases like this, but after some very well-posed questions
in one of the class milestones, we decided to change it to have a system with two different

admins, as explained above.

14

Application

Visualize data
in agraph

Search Disease
Obtain Information Wisualize data Get different
About Disease in atree data sources

Browse Diseases

Visualize data
in a list

User
Get more info

about the project

q Track the
database

H Visualize @ 3
incllude Solved Issues N ! 3
; y nclude Remove inciuds Remove
\ H { N
; \

incluce

. H
include 1 - F

Y i ! include !
' 5

o 8 * Manage

[EGETTY Monitorize Em_ipomts Dashboard Medical
User Reports (Sources/Articles) 8

Admins

Authenticate

Medical Administrative Platform Adrriin
Admin

J

Figura 3.4: Use Cases Diagram

First, the admin needs to authenticate; when this happens, the system filters the possible
actions by his role. The Main Admin has access to a dashboard to see the number of
Families, Diseases, Sources and Articles that exist in the database; a section to monitor
sources and articles endpoints (including disable, enable again or remove them); a segment to
create or remove medical admins. The next topic is the one that all the administrators can
access, and so, the only one that a medical admin can see on the platform. All user reports
are received and can be accepted or denied in the Manage Data section. The admin can also

visualize previously solved issues.

3.6 NON-FUNCTIONAL REQUIREMENTS

Concerning the previous requirements shown above, it is essential to also categorize the
non-functional requirements to make the system more usable and user-friendly. This type
of approach ensures a targeted method, thinking about elements that include scalability,

accessibility, reliability, and modularity, thus improving the previous service model.

3.6.1 Modular Architecture for Feature Expansion

Implementing a modular structure is essential, promoting greater independence between

modules, minimizing coupling, ensuring easy preservation, and enabling scalability. This

15

approach complements current system efficiency and provides a stable path for future project

development.

3.6.2 Ease of Deployment

Efficiency, lowering downtime, and effortless deployment are prioritized to decrease com-
plexity and guarantee an easy transition from development to practical use. This schema
complements overall performance and enables seamless integration into practical usage scena-

rios.

3.6.3 Accessibility (All users including colourblind)

The platform will be designed to be universally accessible, ensuring that all people of
various backgrounds and ages, including people with colourblindness, can effectively research
data. This is a significant improvement over the previous version of the platform, which did
not cater to colourblind users. Additionally, incorporating colorblind-friendly design practices
aligns with broader accessibility goals, making the platform extra inclusive and user-friendly

for a wider target audience.

3.6.4 Cross-Platform Accessibility (Mobile and Web)

The previous platform counted only with a web platform. To ensure greater use by
professionals and students, we will maintain the web version and develop a mobile app to

make the search experience more appealing and ensure its use is everywhere.

3.6.5 Rapid Information Retrieval

As an aggregating system, information access is crucial, as it greatly influences user
engagement. Therefore, by allowing rapid information retrieval, we will encourage regular
usage. This improvement will not only promote user satisfaction but also contribute to the
global effectiveness of the platform by providing a seamless and compelling experience for all

users.

3.6.6 Low Latency

Regarding the aspects discussed above, today’s world is a factor to consider. As users
demand even faster services and give up on those with more latency than usual, we have to
take measures for this not to affect DiseaseCard. To be widely and commonly used as our

endeavour, DiseaseCard must have low latency, allowing for a more pleasant experience.

3.6.7 Scalability for Growing Disease Base

Information is generated and uploaded every second, so the scalability of our database
is of utmost significance. This ensures that users can always get accurate and up-to-date
information. Adopting a scalable database not only meets current demands but also prepares
our system to evolve easily to the ever-changing data landscape, thereby ensuring a reliable

and responsive user experience.

16

3.7 VISUAL IDENTITY

Concerning these requisites, we modelled our platform to be accessible to all. To ensure
this, we tested each colour used in the website with specific Color Blindness Websites to
see if all coloured colours were used. This need surged because Color Blindness is a rare
genetic disease. Where even though its percentage is relatively low, we want to ensure that
information is available to all users. The other sections were inspired by the DiseaseCard’s

previous versions.

17

CAPITULO

Domain Model, Architecture and
Deployment Diagram

In this chapter, we will explore the building blocks of our platform and examine the

decisions made during the project’s elaboration phase.

4.1 DoMAIN MODEL

+type - FeedbackType

Figura 4.1: Domain Model Diagram

19

Article
Disease
+id : long
+id : int
DiseaseFamily + title : String Source
+omim : int
+id 1 UUID K > @p—— + content - String +id :int
+name : Siring
+ name : String +url : String + name : Siring
+ aliases : List=Siring=
+ source : Source
+ family : DiseaseFamily
+ disease : Disease
<=gnumeration>> . <<enumeration>>
FeedbackType Feedback L Approval
WRONGFAMILYNAME +id : UUID +id : UUID ACCEPTED
DISINWRONGFAMILY +target : String +name : String REJECTED
ARTINWRONGDIS + correction : String + password : String PENDING
ARTEMPTY + count : int + totpCode : String
CREATEDISFAM + approval : Approval +role : Role <<enunRﬁ§:':tinn==

MEDICAL_ADMIN
ADMIN

4.1.1 Disease Family

The Disease Family class allows us to group diseases under a common name, simplifying
search queries and allowing users to find what they are looking for more quickly. Not every
Disease belongs to a higher encompassing family, so there are Diseases that have no connection

to any Disease Family.

4.1.2 Disease

The Disease class is the most essential part of our platform because it serves as the
cornerstone for all other classes. The identifier we chose is the OMIM, referring to the Online
Mendelian Inheritance in Man, because it is the most common way to identify rare genetic
disorders, so much so that we can use it to gather relevant information from other sources

quickly.

4.1.3 Source

The Source class, similar to the Disease Family, serves to group articles by their respective
source. We defined it as a different entity and not an attribute of Article to monitor and

manage the various sources in case they become unavailable or compromised.

4.1.4 Article

The Article class stores information that we gather from sources outside OMIM. Each
Article is uniquely associated with a single disease and contains the HTML code selected from

their respective source.

4.1.5 Admin

Unlike regular users, admins can access parts of our service that allow for maintenance.
There are two roles: system admin and medical admin. We store the login information for
each, which may include a TOTP token.

4.1.6 Feedback

Users can submit feedback whenever they spot an error regarding articles or diseases.
There are different types of feedback, and for each of them, the content stored in target and
correction will be different. WRONGFAMILYNAME means that a disease family does not
have the correct name, so the target will be the current name, and correction will be requested
update. DISINWRONGFAMILY indicates that the disease named in target is not in the
right family and should instead belong to the family in correction. CREATEDISFAM
means that the disease named in target should be in a family named correction that does not
exist. ARTINWRONGDIS, much like the previous type, means that the Article in target
belongs to the disease in correction. Lastly, ARTISEMPTY serves to report empty articles.

Feedback can be rejected or approved by medical admins.

20

4.2 SYSTEM ARCHITECTURE

It is essential to consider that during the development of this project, our initial architecture

suffered massive changes, which will be documented in this section.

4.2.1 Primary Architecture

In the first phase of our project, we designed an architecture aligned with the previous
choices made in the previous version of DiseaseCard.

However, we used for the front-end NextJs, a ReactJs framework, to add innovation to
the project. We opted for Neo4j for the back-end to keep the disease, article, and source
information in graph format. The main reason for using this framework was the graph
manipulation inherent to the framework, which simplified the process of querying different
articles, sources, or diseases.

We wanted to utilize Redis for monitoring purposes because it is a fast engine derived
from its memory management. This monitoring was meant to be done manually for each
endpoint.

It also included a proper disease ontology, using RDFs, SPARQL queries, and the COEUS
semantic framework to access and connect the different disease information. For the backend

core component, we opted to use Spring Boot using Java due to our familiarity with this tool.

4.2.2 Secondary Architecture

In the second phase, we realized this during the previous project’s presentation during
classes. As a result of multiple research concerning RDF triplet structure and the inherent
semantic framework, we decided to completely change our architecture to simplify the approach
for our team and for possible changes the future may present for future developers.

The main change in this architecture was the use of web-scrappers. By doing this, we can
access a large portion of information quickly and steadily. The scrappers access each page
from each trusted source and collect the necessary information (title, doi, and abstract).

To conduct that, we intended to save this information in an elastic search database with
all the information available for the Neo4j database to structure the information into a graph.

We intended to use Redis as a message broker to process the information. After some
suggestions made by the regent teachers, we opted to discharge this due to the inefficiency of
the service.

We opted to use Elastic Search due to the possible endpoint monitoring option, which was
well thought out due to the monitoring feature we wanted to implement. The use of elastic
search was also justifiable because of the way we wanted to implement it due to the possible
scalability, the document-oriented search mechanism, and the fast search mechanism.

The intended way for the process to work will be described in a sequence diagram below.
The process would start when the web scrapper was initiated; they would recollect the
necessary information from each source and then put it in the elastic search database. For
the various queries the database needed to do, the neo4j would store them to provide faster

results and then show them to the user.

21

Frontend)
Outside Databases and Web Pages
Public Area

Y
% Search Engine] % Summary Page] Backend J Databases)
% Browse Engine] % Infographic Page] % Data Reader }-@% igg;jg:] —_— YN
é TCPIP e

O O+4— paa

Admin Area kend Core] - Storage
Disease Data Data Collector Indexer ~
Dashboard

(- Internal State
API Connector

% Data Connector Browser J TCP/P (O_ ©
NT—1
User Feedback f | TcPIP N—

Dashboard) O1— cace

% Rest AP] Caching J | o P Engine

o1

N

Figura 4.2: Enterprise Architecture

4.2.3 Third Architecture

In our third and final version, we fixed some issues essential to the application’s overall
structure.

It is important to note that the final version of our architecture comes from the problems
we faced and raised from mentors and teachers, as well as continued research to provide the
best system and be open to modifications in the future and possible improvements.

Based on a suggestion from our advisor, we decided to change our database structure due
to the interconnected tables and data. Instead of using Elasticsearch and Neo4j, we switched
to PostgreSQL, as recommended by our advisor. This may not seem as an obvious choice at
first, but once we realise that the graphs are in fact tree-structured, then we can see that a
relational model has a much better application then a graphs database, as there are no cycles
and no multiple relations between nodes.

The choice between PostgreSQL and elastic search was derived from various factors, such
as the facility of use of each database, the aggregation techniques to use, and PostgreSQL
being primarily used as a primary data source, where PostgreSQL was proven useful only in
retrieving fast results.

Given these considerations, the team decided to use Elastic Search only if the query time
became extensive due to PostgreSQL’s robustness.

For the scrappers, we utilized a plug-in architecture to simplify the addition of a new
source and recollecting as much information as possible from different sources. We changed
the form we were supposed to use to do this by running the scrappers all at once and providing
a user-friendly GUI to access and disable those scrappers momentarily or entirely.

In a later phase, while testing, we discovered that PostgreSQL could not support more
than 255 characters, so we implemented MongoDB tactically only in articles. This document
is connected to others, source and disease, through the corresponding IDs, thus being able to

store all information.

22

4.3 API DOCUMENTATION

The system contains a robust API that handles all requests regarding data processing,

management and user logins. This documentation was done using SwaggerUI.

4.3.1 Admin

Admin op ining to admint ~
‘ /api/admin/enableSource/{name} enable source v‘
‘ /api/admin/enableArticle/{id} enable article v‘
‘m /api/admin/editMedicalAdminName/{id} Edit medical admin name v‘
‘m /api/admin/disableSource/{name} Disable source v.‘
[m /api/admin/ ggregate Testthe fion algorithm using external data v]
[m /api/admin/createMedicalAdmin Create medical admin v]
‘m /api/admin/changeDiseasetoOtherFamily/{omim} Change disease to other family v.‘
‘m /api/admin/changeArticletoOtherDisease/{id} Change aricle to other disease v.‘
‘m /api/admin/alterfamilyname/{id} Alter family name v‘

/api/admin/test Test v

| |
[GET /api/admin/testMedicalAdmin Testmedical admin V]
[/api/admin/testAdmin Testadmin V]
[57 /api/admin/safeAggregate Safely tsstths aggragation algorithm on current data v]
[38 /api/admin/role/{name} Getadmin role v]
[57 | /api/admin/numbSrc Getnumber of sources v]
Figura 4.3: Admin Controller (1)
[/api/admin/numbFamilies Getnumber of families v‘
[/api/admin/numbDiseases Getnumber of diseases v‘
[/api/admin/numbArticles Getnumber of articles v‘
[/api/admin/medicalAdmins Getmedical admins v‘
[/api/admin/disabledSources Get disabled sources v‘
[/api/admin/disabledArticles Getdisabled articles v‘
[/apifadmin/clearFamilies Clearfamilles \/‘
[/api/admin/aggregateDiseasesByFamily Aggregate dissases by family, using an aggregation algorithm ~ ‘
[J/api/admin/activeSources Gat active sources v‘

[(=03 W /api/admin/{id} Delete an admin v]

l L=0= W /api/admin/deleteSource/{name} Delete source v]
l (=08 /api/admin/deleteMedicalAdmin/{id} Delete medical admin v]
l /api/admin/deleteArticle/{id} Delete article v]

Figura 4.4: Admin Controller (2)

23

4.3.2 Authentication

Authentication Operations pertaining to authentication ~

I /api/auth/validate Validate v‘
I /api/auth/signup Signup v‘
I /api/auth/login Login v‘

Figura 4.5: Authentication Controller

4.3.3 Disease Family

Di Fam||y o] pertaining to disease families A~
Im /api/family/{name} Getfamily by name vl
I m Japi/family/substring/{name} Getfamily that start with the inserted letters v l
[m /api/family/startsWithLetter/{letter} Getfamiywhose first letter matches the inserted latter ~ I
Im /api/family/refreshView Refresh materialized view R I
I /api/family/graph/{name} Getgraph info ~ I
I /api/family/getArticleCountPerFamily/{name} Get article count per family v I
I /api/family/allFamilies Get all families \/I

Figura 4.6: Disease Family Controller

4.3.4 Disease

Disease Operations pertaining to diseases A
I <50 /api/disease/{omim} Get disease by omim v‘
I Lo /api/disease/all Getall diseases o ‘

Figura 4.7: Disease Controller

4.3.5 Source

Source Operation pertaining to data sources N
[©5 8 | /api/source/specific/{name} Getsource by name v‘
’ (3 /api/source/all Getal sources - ‘

Figura 4.8: Source Controller

4.3.6 Article

24

Article operations pertaining to articles a
GET Japi/articles/{id} Getarticle byID h
c=p | /api/articles/source/{sourceName} Gel ariicles by source i

/api/articles/all Getall aricles v

Figura 4.9: Article Controller

4.3.7 Feedback

Feedback operations pertaining to feedback A
/api/feedback/reject/{id} Reject feedback o
/api/feedback/approve/{id} Approve feedback -
/api/feedback/save Savefeedback N

€50 | /api/feedback/type/{type} Getfoedbackby type o«

/api/feedback/structured Get structured feedback v

GET /api/feedback/solved Getsolved feedback “

GET /api/feedback/id/{id} Getfeedback byid o

/api/feedback/all Getall feedback v

|m /api/feedback/delete/{id} Delete feedback N
Figura 4.10: Feedback Controller

4.4 WEB SCRAPING

4.4.1 Initial Method

Our data-scraping process is built on three fundamental premises that form the foundation

of our method.

o Accessing OMIM Data: The Online Mendelian Inheritance in Man (OMIM) da-
tabase is an invaluable resource for genetic information. OMIM provides a file called
mim2gene.txt (available here) which contains a comprehensive list of OMIM numbers.
These numbers indicate whether the entries are related to diseases. This file serves as
the starting point for our scrapping efforts.

e Converting OMIM Numbers: Once we have the OMIM numbers, the next step is
to translate them into actual disease names and their respective acronyms. The OMIM
database allows us to make this conversion. This step is crucial because it transforms
numerical data into meaningful medical terminology that can be used in further searches.

e Gathering Additional Information: With the disease names in hand, we can now
contact other websites for more detailed information. The primary sources we use
for this additional data are PubMed and Malacards. PubMed is a free search engine
accessing primarily the MEDLINE database of references and abstracts on life sciences

and biomedical topics (available here). Malacards is an integrated database of human

25

https://www.omim.org/static/omim/data/mim2gene.txt
https://pubmed.ncbi.nlm.nih.gov/

maladies and their annotations (available here). These sites provide many articles and

summaries that can give us deeper insights into each disease.

These three steps create the basic flow of our initial scrapping method. Here is how it

works in practice:

e Step 1: We start by downloading the *mim2gene.txt’ file from OMIM. This file gives us
all the OMIM numbers and indicates whether each entry is a disease. Entries related to
moved, removed, or gene-specific information are ignored at this stage because we focus
solely on diseases.

e Step 2: Using the OMIM numbers identified as diseases, we convert these numbers into
their corresponding disease names and acronyms. This conversion is done through the
OMIM database itself.

o Step 3: With a list of disease names, we perform search requests on PubMed and
Malacards. These searches return a list of valid articles related to each disease. From
these lists, we can request the full text of the articles, focusing mainly on the main body,

summary, abstract, and other relevant sections.

By following these steps, we efficiently gather and compile detailed information about
various diseases, leveraging multiple trusted sources to ensure the accuracy and depth of the
data. This method allows us to build a comprehensive database that can be used for further

research and analysis.

26

https://www.malacards.org/

:Controller :Crawler :Parser :Scrapper :Persister

L] L] L]
init ! ! ! !
0 1 1 1
1 1 1
Normau crawl , ! ! !
s parse_omim - : :
v ' '
return names i i
€ = mm e i i
i i i
i i i
i i i i
load_plugins . . .
i i i
i i i
i i i
i i i
Toop ! ! :
omim f f f
i i [
Ioog i i
plugin : get_data(name) . :
T - i
i i
i i
: get_articles :
[[
[[
[. [
i return articles i
e PRy ——— '
i 1 1
]] 1
+ 1
ﬁersist_data(diseases, artil:les.} o !
T T -
1 1
1 1 i
: : persis
1 1
1 1
’ :_ return :_
1 1
' ' '
return : : :
fe = e s s e e e aa , , ,
1 1 1
1 1 1

Figura 4.11: Outdated Scraping Process

4.4.2 Improved Method

After implementing our initial scraping method, we received a request to modify our
approach to utilize a plugin architecture. The goal was to make our system more flexible and
adaptable. With this new approach, an administrator could easily add support for scraping
new websites by submitting a JSON file. This JSON file would define the scraping parameters
and rules specific to the new website. Our system would then convert this JSON file into a
Python class, which would be dynamically loaded and used to perform the scraping. This
modular architecture allows for easy updates and the addition of new sources without requiring
changes to the existing codebase. This flexibility ensures that our system can quickly adapt
to new requirements and integrate additional data sources with minimal effort.

We used this new method to address an already identified problem. The initial separation
of parsing, crawling, and data persistence into three distinct phases proved to be inefficient.
Specifically, we faced issues with getting IP blocked during the parsing phase. The time spent
on data persistence could have been used more effectively to avoid these bans. Therefore, we
decided to intertwine all three processes so that they occurred in a more integrated manner
rather than sequentially. This interleaving of tasks allowed us to process data more smoothly

and reduce the risk of IP blocks. Additionally, this approach made it possible to divide the

27

:Controller ‘Crawler ‘Parser ‘Scrapper ‘Persister

init -

| | 1 i
i]]]
i]]]
L —— : i i i
1 i i i
Mormal / crawl L I ' '
» obtain_omim H H
> ! !
” return disease_omim E E
; i i
i]]
load_plugins | i '
[a | |
]]]
]]]
]]]
]]]
: i i
loop omim,/ : ' :
loop plugin / | get datajname) '
: > i
]]
X H
i net_articles i
i]
i return articles i
ERRRR R by ettt :
]]
) ; :
; H H
i persist_data i N '
i 1 *| |get_articles
: i
]]
! return \
{ ____________________ e b
;]
i]
i]
i i
refurn | 1
AR) :
) :
; :
i]
i]
i]
i]
i]
! !

R

-

Figura 4.12: Scraping Process

collection tasks across different machines more easily. However, this was not the primary aim
of our change. Since at the deployment machine we were limited to scraping from a single 1P
address, our main bottleneck was not the data processing but the rate at which we could work
with our data sources. By combining the processes, we optimized our workflow and made

better use of the available time to avoid detection and maintain continuous operation.

4.4.3 Temporary Method

In addition to improving our system, we also had to develop a temporary method to
address some technical challenges we encountered. One significant issue was the need to
fine-tune our scraping times. Initially, our scrapping frequency was too aggressive, resulting
in bans from several websites. This forced us to adopt a more controlled and methodical
approach to scrapping.

To address these challenges, we had to incorporate multiprocessing into one of our plugins.
This allowed us to significantly reduce the time required for that specific plugin by around
40%. However, for other plugins, we had to implement processing sleep functions to slow
down our requests and avoid being banned.

Overall, we initially estimated that the entire scrapping process would require about 110

hours of continuous work, roughly equivalent to one workweek. Thanks to the improvements

28

we made, particularly the time saved by the optimised plugin, we managed to complete the
task in approximately 64 hours. This matched our expectation of saving around 40% of the
time on that one plugin, which was responsible for about 85% of the total workload.

These adjustments allowed us to balance efficiency with the need to avoid detection
and bans, ensuring that our scraping activities could continue without interruption. The
temporary method, while more rigid, proved effective in managing these challenges and helped

us maintain our overall project timeline.

4.5 AGGREGATION ALGORITHM

Some of the thousands of rare genetic diseases can be grouped into families. To facilitate
this aggregation, we developed an algorithm that takes all the diseases and creates disease
families, naming them in the process.

The method we chose for determining which diseases belong together was based on the
disease acronym. Around 70% of the diseases in OMIM have an associated acronym, which
consists of an abbreviation of the disease that distinguishes genetic variations. Take, for
example, MODY (Maturity-Onset Diabetes of the Young).

This disease has a noticeable genetic heterogeneity, meaning many genetic variations affect
and give nature to other diseases. However, in most cases, because the mutations do not alter
the disease characteristics much, the new disease maintains the same name but is attributed
to a number. As such, these diseases take on the acronyms with an added numeral, which in
the case of MODY results in MODY1, MODY2, MODY3, etc, all the way up to MODY14.

Based on this naming convention, our algorithm takes the acronym of each disease, strips
it from all numerals and constructs the family name by matching each letter of the acronym
to a word of the disease name. It then groups all diseases with the same family name and
discards any family with less than two members.

This algorithm is good enough for our goals, grouping around 50% of all diseases into
hundreds of families, but it has some flaws. The main one is that the estimated 30% of
diseases that don’t have an acronym are not aggregated.

In the following diagram, the symbol refers to the acronym.

29

‘DiseaseFamilyService :AggregationAlgo

|
aggregateDizeazesByFamily() i
L L aggregate(dizeases)

loop GISEESBX L getSymbol{name)

symbolToName{symbol name)

&

checkForExistingFamily()

return
e L

persist

Figura 4.13: Algorithm Sequence Diagram

4.6 DATA SECURITY

For this project, the main web page can be viewed by anyone without needing a signup
and login, but that is different for the Admin. Because an Admin and Medical Admin deal
with sensitive information that, if wrongly accepted or denied, could have adverse effects, we
implemented JWT tokens. Only the admin can access the admin area by logging in. The
passwords are encrypted using the BCrypt Encryption algorithm. By using JWT tokens, the

tokens are signed and randomized, ensuring more security.

4.6.1 Role Based Access Control

Throughout the project’s development and with the different milestones and questions,
there surged a need to add a Medical Admin. As explained above, in the different actors of
the system, a medical admin can only do certain operations, unlike the Admin, who has full
autonomy in the system. For that to be possible, in the storage of credentials, it is associated

with a role so that it can be specified which endpoints which user can access.

4.7 DEPLOYMENT ARCHITECTURE

The tool we used to make the deployment of DiseaseCard was Docker, more specifically

docker-compose, which allows for the containerization of each component of the platform.

30

Docker, which is massively used to run applications, runs using containers, a packaged
format that stores all the code and dependencies, allowing it to run smoothly and quickly
across different computing environments.

Using a docker-compose, the user can define and use multi-container applications and
connect them into a network, as in this project, or wait for one to start the other.

The diagram is represented below. Note that for the deployment, we opted to separate
the frontend from the backend and the databases to provide a modular architecture. This
architecture is easier for deployment, easier to understand, and allows us to decouple the used

containers. By ensuring this, we are fulfilling one of the non-functional requirements.

<=<device=>
:ApplicationServer

<=execution environment>>
:Docker

<<container->
:PostgreSQL

<<artifact>>
Database

TCPIP

<=container-=>
:MongoDB

TCPAP

<=server>>
Tomcat

<=arfifact>>
Articles

TCPAP

<<sBIVars>
:React

<=artifact=>
Diseasecard

=<artifact==
Backend
TCPIP

s=server>
Nginx

<<artifact>>
Reverse Proxy

TCPAP

<<app=>
:ReactNative

<=artifact=>
Diseasecard Mobile

J

Settings

<=deployment specification>=
docker-compose.yml

Figura 4.14: Deployment Diagram

31

CAPITULO

Results

Throughout the previous chapters, we explored different requirements and details to make
the product ideal for use. We have established personas and use cases, defined technologies
to use in the product to make the requirements work, and the different ways the different

personas could use the product.

5.1 DISEASECARD

On the main website of Diseasecard, we can access three different pages: Homepage,

Browse Page and Disease Page.

5.1.1 Homepage

The homepage is the entry point to the platform, and it is where the user can search
for all the disease families and diseases that are not aggregated. That component uses an
auto-complete system to allow the user to navigate to the disease family page intended. At

the top, we can find a navbar that we can use to access other pages, such as the browse page.

33

ﬂ!SEHSECHHI] QUHOME | ALLDISEASES ABOUTUS

DXSEASECARD

[Search..]

Welcome to Diseasecard!

Try the system by entering the name of a disease in the search field above or navigating through our Diseases Tab.

Figura 5.1: Homepage

5.1.2 Browse Page

The Browse page allows users to access and explore the alphabetically ordered list of all
disease families on the platform. This page consists of a horizontal component that allows the
user to select the chosen letter and a data table that displays the requested data. This table
contains three columns: the first with the name of the disease, the second with the number
of diseases of the respective family and the third containing the total number of articles in
the family. Also, in the second column, if there is only one disease, it is not aggregated to
any family. If the user clicks on a table row, as explained in the previous section, he will be

redirected to the respective disease family page.

D§SEHSECHHB Q HOME ALL DISEASES ABOUT US
Families started with letter: G [Filter by Name. n

Name Diseases Articles

Gaba-Transaminase Deficiency 1 18
Gabriele-De Vries Syndrome 1 14
Galactorrhea 1 17
Galactosemia 4 44
Galactosialidosis 1 20
Gallbladder, Agenesis of 1 20
Gallbladder Disease 4 45

Galloway-Mowat Syndrome 10 68

Figura 5.2: Browse Page

34

5.1.3 Disease Family Page

When the URL parameters redirect to the disease family page, the name is passed in.
Then, the API is requested to return an object organized hierarchically: at the top, we have
the name of the family (if there is one), followed by the diseases in that group. Each disease
can have information from many data sources; for each source, there is a list of articles. The
data can be displayed in three different strategies: "Bubble Graph,Hypertree Graph,"and

"Accordion List."

Bubble Graph

The amCharts library was used for the bubble graph implementation. This component
has great functionality that lets the user see more details about the specifics of the desired

disease, removing irrelevant ones.

n*sEHSEcHHD Q HOME ALL DISEASES ABOUT US

DEAFNESS X-LINKED

Deafness,
X-Linked 4

Ciliopathi...
Deafness,

X-Linked 7
Xelinked |

Alports s,

pel -

Afamily w.

Deafness,

Clinical a. YeLinked 6

Deafness,
pubmed X-Linked 3
Novel form.

.........
Audiologic. Deglness,
X-Linked 2

Role of sk

Xlinked M.

Figura 5.3: Bubble Graph

Hypertree Graph

It was implemented a hypertree graph with jit hypertree from Nicolas Garcia Belmonte.

This element allows the user to zoom in on a specific disease or source to see more detail.

35

D%SERSECARD

Accordion List

ALLDISEASES ABOUTUS

QHOME

ALOPECIA-INTELLECTUAL

ia-intellectual Diabiliy Syndrome 3

Alopecia-Intellegidal Disability sy

fGoia-intgllectual

ual Disabllity Syndrome 2

Phenotypic.
Prenatal &
Alopeciam.

Associtio

Cardiooct
—

Bain MR 1

Avoimmun
Alopecia-intellectual Digbili
Demotoog

Epidemicio
et v,

Bitelc
Cardofact

Alopecia/m.
SN Cleftpala.

Aopecia
Clricale.

seof
Woodhouse-.
UnsohvedertapfGomes:Lo

Figura 5.4: Hypertree Graph

To demonstrate the data in a list, we used the Accordion Bootstrap component to represent

the different hierarchical levels. For more significant amounts of data, this is the most effective

visualization method.

D3SERASECARD

QHOME ALLDISEASES ABOUTUS

DEAFNESS X-LINKED

Deafness, X-Linked 2 v

Deafness, X-Linked 3 ~

pubmed

type lllinner ear anomaly in East Asian populations and

involving POU3F4 in
ing.

plete

De novo large del
implications for genetic counseli

Identification of a Novel Frameshift Variant of POU3F4 and Genetic Counseling of Korean Incomplete Partition Type Iil Subjects Based on
Detailed Genotypes.

Outcomes of cochlear implantation in patients with incomplete partition type Il

Positive Outcomes and Surgical Strategies for Bilateral Cochlear Implantation in a Child With X-Linked Deafness.

Deafness, X-Linked 4

Figura 5.5: Accordion List

5.1.4 Article Page

When the user selects an article, a new component is showed. Beyond the title and content,
the user can also check the last update of the article, see what is its source and navigate to

the respective url.

[BfSEHSECHHﬂ QHOME ALLDISEASES ABOUT

DEAFNESS, AMINOGLYCOSIDE-INDUCED

PARP-1-MODULATED AIF TRANSLOCATION IS INVOLVED IN STREPTOMYCIN-INDUCED
COCHLEAR HAIR CELL DEATH.
Last Updated on | 2024-05-25 20:51:14

o) 2] 4

Abstract

Conclusion SM-induced dose- and location-dependent cochlear hair cell death in vitro. AIF might be translocated from mitochondria to nucleus and
cytoplasm within SM-treated hair cells. The translocation of AIF might be modulated by PARP-1. Objective Streptomycin (SM), one of the widely used
aminoglycoside nowadays, is still causing significant permanent sensorineural hearing loss owing to sensory hair cell death. This study was designed to
investigate the role of apoptosis-inducing factor (AIF), an important mitochondrial cell death regulator, in SM ototoxicity within neonatal rat cochleae and
HEI-OC1 cells. Methods The viability of HEI-OC1 cells was quantified by MTT assay. AIF, PARP-1, and myosin Vila distributions were achieved by
immunofluorescence. mRNA and protein expression of AIF and PARP-1 were examined by q-PCR and Western-blot. Results The hair cell loss was
concomitant with the SM concentration variation, and aggravated from apical to basal turn. AIF was detected in nuclear region and AIF mRNA was up-
regulated after SM incubation. Besides, AIF protein expression in mitochondria was decreased, whereas in cytosol it was increased. PARP-1 mRNA and
protein were also up-regulated. 3-AB could attenuate the cell death and reverse the changes of AIF distribution by blocking PARP-1

Keywords: HEI-OCT cell; Streptomycin ototoxicity; cochleae organotypic culture; programmed cel death

Source | pubmed
Article URL | htips://pubmedncbinim nih.gov/2696316

Figura 5.6: Article Page

5.1.5 Feedback Option

If a user finds information wrongly placed or wrongly associated, they can report it. The
reports will later be analyzed by a medical admin and admin, and then they will be denied or

accepted.

Disease Feedback

The user can report if a family name is incorrect or a disease is in the wrong family.

Family Name Not Correct Feedback

The user only needs to write the name the family should have, and then it will be visible
to the admins.

Disease in Wrong Family

The user only needs to write the name of the family that a disease should have or suggest

the creation of a new disease, and then it will be visible to the admins.

37

Do you see any error in the information?
Click what you want to report.

Family Name is not Correct

Disease in the Wrong Family

Figura 5.7: Disease Feedback

FEEDBACK - FAMILY NAME IS NOT CORRECT
p=4

As you may know, all the info about the Diseases is not from our responsability, therefore, we cannot change it and if you notice something wrong with them you should inform the
responsibles of the information you read.

What we are actually responsible and able to change is the Family of the Diseases or create new ones, so if you notice that a Disease Family has an Incorrect Name or a Disease is in the:
Wrong Family.

We can as well change Articles location if you notice that they are in the wrong Disease. In the cases the Article is just Empty we can remove it.

You can help us by filling the forms of the problem you found.

Fill with the Disease Family that has a Incorrect Name!

[3-hydroxy-3-...]

Fill with the Name you think the Family should have!

(o)
Trankyou

Figura 5.8: Disease Family Name Not Correct

38

FEEDBACK - DISEASE IN THE WRONG FAMILY
p=4

As you may know, all the info about the Diseases is not from our responsability, therefore, we cannot change it and if you notice something wrong with them you should inform the
responsibles of the information you read.

What we are actually respensible and able to change is the Family of the Diseases or create new ones, so if you notice that a Disease Family has an Incorrect Name or a Disease is in the
Wrong Family.

We can as well change Articles location if you notice that they are in the wrong Disease. In the cases the Article is just Empty we can remove it.

You can help us by filling the forms of the problem you found.

Fill with the Disease that is in the Wrong Family!

[3-hydroxy-3-Methylglutaryl-Coa Lyase Deficiency | H]

Fill with the Correct Family of the Disease above!

(o)

Don't find the disease family pretended? Click here to suggest a new one!

Thank you!

Figura 5.9: Disease in Wrong Family

39

Article Feedback

The user can report if an article is placed on the wrong disease or if the article is empty.

Do you see any error in the information?
Click what you want to report.

[Article in the Wrong Disease

N

[Article is Empty

S

Figura 5.10: Article Feedback

Article in Wrong Disease The user can report if the article is wrongly associated with

a disease by fulfilling the name of the correct disease name.

FEEDBACK - ARTICLE IN THE WRONG DISEASE
p=4

As you may know, all the info about the Diseases is not from our responsability, therefore, we cannot change it and if you notice something wrong with them you should inform the
responsibles of the information you read.

What we are actually responsible and able to change is the Family of the Diseases o create new ones, so if you notice that a Disease Family has an Incorrect Name or a Disease is in the
Wrong Family.

We can as well change Articles location if you notice that they are in the wrong Disease. In the cases the Article is just Empty we can remove it.

You can help us by filling the forms of the problem you found.

Article selected automatically.

[3_hydroxy_3_methylglutaryl_coa_lyase_deficiency]

Fill with the Correct Disease of the Article above!

=)
Tranyou

Figura 5.11: Article in Wrong Disease

Empty Article

40

The user can report if an article does not have any information.

FEEDBACK - ARTICLE IS EMPTY
p=4

As you may know, all the info about the Diseases is not from our responsability, therefore, we cannot change it and if you notice something wrong with them you should inform the
responsibles of the information you read.

What we are actually responsible and able to change is the Family of the Diseases or create new ones, so if you notice that a Disease Family has an Incorrect Name or a Disease is in the
Wrong Family.

We can as well change Articles location if you notice that they are in the wrong Disease. In the cases the Article is just Empty we can remove it.

You can help us by filling the forms of the problem you found.

Article selected automatically.

[3_hydroxy_3_methylglutaryl_coa_lyase_deficiency]

Thank you!

Figura 5.12: Empty Article

5.2 DISEASECARD ADMIN

5.2.1 DashBoard

In the dashboard section, the admin can visualize the database number of disease families,

diseases, sources, and articles.

DXSERSECARD

ovERaLL

{0 G Disease Families 688 Diseases 9 5 04

stmsmcs

Disease Families aggregate diseases that share common Diseases are the main entities of the system
Bl leeafi becd characteristics

MANAGEMENT

3 Manage Data

il Monitorize Endpoints

3¢ Manage Medical Admins Sources 3 Articles 1 10940

SESSION
Sources are the references of the data Articles contain the information about each disease

© Logout

Figura 5.13: DashBoard Admin

41

5.2.2 Manage Data
On this tab, both the admin and the medical admin can check the feedback provided by

the users and accept or deny it. It is also possible to visualize the feedback history.

D3SERSECARD

overaLL Family Name is not correct v

Disease in the Wrong Family ~

Change Jinemia, X-Linked | XLA to Jinemia Family Requests: 1

A Home

sTamsmics

@ Dashboard

Create Family Autoimmune Thyroid Disease, Susceptibility to and Move Autoimmune Thyroid Disease, Requests:1

Susceptibility to, T to it
MANAGEMENT

Article in the Wrong Disease v
alll Monitorize Endpoints
3¢ Manage Medical Admins Article is Empty v
session
Issues Solved v

[Logout

Figura 5.14: Admin Feedback Acceptance/Refusal Page

5.2.3 Monitorize Endpoints

This tab is where the admin can monitorize the articles and source endpoints. It is possible
to see all the sources presented in the system and disable, enable or delete them. The same
occurs with the articles, although in this case, it just shows the disabled articles (the empty

ones) and enables or deletes them.

D3SEASECARD

overaL .
Source Endpoints

omim

A Home
Active Sources: 3

1 O O Disabled Sources: 0
0
% Tl Sures s

() Dashboard

MANAGEMENT

¥ Manage Data

alll Monitorize Endpoints

3¢ Manage Medical Admins

Article Endpoints
-
Active Articles: 110940
O Logout 9 9 9 Disabled Articles: 5
Y Toal A 10345 - (o)) o)
©

9359 @ || enable || Remove >

Figura 5.15: Admin Endpoint Monitoring Page

42

5.2.4 Manage Medical Admins

In this section, the main admin can create or delete accesses to the platform by medical

admins.
DXSERSECARD
Total of medical admins:3 + Add medical adm
oveRaLL
A Home
stmsnics
() Dashboard John Doe “ Charles Spencer “ George Stevens [
MANACEMENT
o

3¢ Manage Data

alll Monitorize Endpoints

3¢ Manage Medical Admins

SESSION

(> Logout

Figura 5.16: Medical Admins Management Page

5.2.5 Medical Admin View

When a Medical Admin log in the system, due to RBAC, he only can access to the Manage
Data tab. This was made based on that a medical admin has no technical knowledge but
instead has medic knowledge that a engineer doesn’t. So a medical admin is good for the

purpose of confirming users reports related to diseases.

D3SERSECARD
OVERALL Family Name is not correct v
A Home
Disease in the Wrong Family v
MANAGEMENT
3¢ Manage Data Artide in the Wrong Disease «
session Artide is Empty v

(> Logout

|

Issues Solved

Deactivate Artide 6306 Requests: 1 REJECTED
Deactivate Artide 6407 Requests: 1 REJECTED
Deactivate Artide 6308 Requests: 1 REJECTED
Change Alzheimer Disease 10 to Alzheimer Disease Family Requests: 1 APPROVED
Deactivate Artide 9357 Requests: 1 APPROVED

- e - . ApDDANER

Figura 5.17: Medical Admin View

43

5.3 DISEASECARD APP

The mobile app is very similar to the main website, concerning the user workflow, since
that the two systems only differ in relation to the admin platform, as this is not present on

the app.

5.3.1 Disease Search

Just like in the website, as soon as the user enter the app, he will be facing a search bar,
that will allow him to search through all the data that exists in the website too, all the disease
families and diseases that are not aggregated. The search bar includes an auto-complete

feature to help the user to easily find the disease family he is looking for.

Figura 5.18: Disease Search

5.3.2 Disease Info

When the user chooses the disease family he wants to see, he will redirected to correspondent
page containing the same family name as a title. At the same time the app will do a API
request to return the object which in the app, contrary to the website, will only be possible
to see in one view, a Accordion List similar to the website one. The differences in those are
were made so to the interface would be more user-friendly and effective. The Accordion is not
the same in the aspect that the user only have to press the disease once and all the sources

and articles will pop up instead of opening the data child by child.

44

Parkinson

Parkinson Disease 12| PARK12 A

pubmed
@ Ano
@ c

Figura 5.19: Disease Info

5.3.3 Article View

Then, after choosing which article to read, the API will once again be requested to return
the data the user asked for. This time, it will be a request to get the article by its ID. After
the request is completed, the article will be presented to the user in a very simple format,
with just the text from the original source displayed in a linear font and size. In addition to
the content, the user will also receive the source name, the original article URL, and the last

updated date of the article. This information will be shown at the end of each article.

A novel RAB39B gene
mutation in X-linked juvenile
parkinsonism with basal
ganglia calcification.

Abstract
Obijectives:

Mutations in RAB39B have been reported
as a potential cause of X-linked Parkinson's

disease (PD), a rare form of familial PD. We
conducted a genetic analysis on RAB39B
10 evaluate whether RAB39B mutations are
related to PD in the Chinese population.

Methods:

In this study, 2 patients from an
Xlinked juvenile parkinsonism pedigree
were clinically characterized and
underwent whole-exome sequencing. A
comprehensive screening for RAB39B
mutations in 505 sporadic patients with
PD and 510 healthy controls in a Chinese
population was also performed.

L

Figura 5.20: Article View

5.4 SUMMARY

In this chapter, we detailed the functionalities and design of the Diseasecard platform,
both on the website and the mobile app. We explored the key pages, including the Homepage,
Browse Page, Disease Family Page, and Article Page, describing their purpose and user

interactions.

45

Additionally, we discussed the Feedback Option, enabling users to report inaccuracies,
and the Diseasecard Admin interface, where administrators manage feedback and monitor
endpoints. The mobile app mirrors the website’s functionality, focusing on user-friendly
navigation. The chapter provides a comprehensive overview of how Diseasecard facilitates

disease information access and management for both users and administrators.

46

CAPITULO

Analysis of Results and Future
Works

6.1 PROJECT SUMMARY

In sum, this project allowed us to take a deep dive into the world of genetics and diseases,
especially rare genetic diseases. It’s astounding how sparse disease information is spread
around and how difficult it is to locate information about one specific disease.

By implementing DiseaseCard, the user can access different articles from different sources
and observe different families and diseases associated with that family.

If information is placed incorrectly, we count on a feedback option to alert the admins
that that piece of information is wrong. This information can only be added to the website if
the medical admin and admin accept it, with an option to deny it.

On the general page, a user can search for diseases from the first letter and text using the
main page. On the admin page, the admin can add medical admins, turn articles and sources

on and off, and monitor endpoint information.

6.2 FEATURES AND BENEFITS OF THE PRODUCT

As a product, DiseaseCard allows for consultation of articles and scientific papers related
to a specific disease by searching for the disease family and then being redirected to the graphs
page. The user may observe the different diseases in the family, the websites with papers on
particular ones, and the actual papers themselves. The hyper-tree view, in contrast, allows for
an overview of how different entities in the family are interconnected. For example, one may
see how some diseases or sources have more papers than others. Last, the list view allows a
more direct search of a specific article.

DiseaseCard also allows users to browse an all-disease list for users unsure of which disease
they wish to select, following the same path as the regular user. We have an administrative

platform incorporated into the website for an administrator. There, an admin may perform

47

activities like monitoring endpoints, where he can see which sources and articles are activated
or deactivated. He may also perform actions like creating a Medical Administrator entity.
This is the last entity with whom the administrator shares some actions.

These are the general dashboard, where both entities may consult the total number of
families, diseases, sources, or articles; and data management, where they may, according to
user feedback, modify data, whether this is disabling articles, changing articles from one
disease to another, or even changing entire diseases or families. They may also create or edit

disease families, having access to previous changes.

6.3 LIMITATIONS OF THE PRODUCT

6.3.1 Sources

The product must still show limitations due to high demand and complexity.

One of the major extra goals that was ultimately not achieved was allowing the admi-
nistrator to know about the most accessed endpoints, mainly disease families and articles.
This would allow for the eventual identification of articles with defects, whether they are not
properly displayed or the information is simply wrong.

At this point, you come to another feature that was scrapped from the final product.
That information would allow the administrator to run the web crawling process to re-fill the
databases. Unfortunately, an IP block from our leading site forced us to abdicate from this
method.

Another goal of this project was to gather articles and information from as many sources
as possible to maximize the value created by our product. However, as it stands, DiseaseCard
can only crawl in 3 sources, with most articles coming from PubMed.

The main reasons for this are the heterogeneous nature of the websites, the insane
amount of actual data, and the impossibility of applying multiprocessing due to recurring IP

banning/restricting at most websites.

6.4 POTENTIAL FUTURE IMPROVEMENTS
We would have liked to work on these features and improvements if we continued to
sustain and develop the project.
6.4.1 Client-Side
Related Diseases

While a primitive version of this feature is already implemented in the system through
disease family aggregation, the next step would be to gather more information about each
disease and create a better network capable of relating diseases based on genetics, symptoms,

geographic data, and more.

108 Support

One step in scaling the product would be to introduce iOS support, complementing the

already-in-place Android support.

48

Chat Bot - Al support

One of the ultimate and additional features was implementing a chat using Al to authenti-
cate the search process. In there, a user could say keywords like the desired disease or possible

symptoms, and the Al would help narrow it down to a single disease family.

6.4.2 Admin-Side
Endpoints Monitoring

As a system handling disease data that is highly used by professionals, it’s important that
the displayed information is, in fact, correct.

Our human review system allows us to tag on as wrongly displayed. Considering this,
we would first and foremost build a proper monitoring dashboard that would allow the
administrator to have complete information regarding disease families, diseases, and article
accesses. This would effectively help decide the seriousness of reports, as ten reports out of
100 visits carry a different weight than ten reports out of 20 visits, and also which ones should

be human-reviewed to ensure proper information display.

Security - 2FA

In a system where logged users have high responsibility, it is crucial to ensure that attackers
cannot usurp users’ accounts. For this, it would be of utmost priority to introduce a two-factor
authentication method, like a time-based one-time password system.
6.4.3 Back-end Related
Database Refresh

We developed a web scraping system capable of not only gathering information and articles

from sources but also creating the disease entities by searching through OMIM.

49

1]

2]

[9]

(10]

(11]

(12]

(13]

Referéncias

T. Richter, S. Nestler-Parr, R. Babela et al., «Rare disease terminology and definitions-A systematic
global review: Report of the ISPOR rare disease special interest group,» en, Value Health, vol. 18, n.° 6,
pp. 906-914, set. de 2015.

European Commission, Rare Diseases, https://research-and-innovation.ec.europa.eu/research-
area/health/rare-diseases_en, Accessed: March 25, 2024, 2024.

J. K. Stoller, «The challenge of rare diseases,» en, Chest, vol. 153, n.® 6, pp. 1309-1314, jun. de 2018.

Orphanet, Prevalence of Rare Diseases by Alphabetical List, https://www.orpha.net/pdfs/orphacom/
cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf, Accessed: March 25,
2024, 2024.

K. M. Boycott, A. Rath, J. X. Chong et al., «International cooperation to enable the diagnosis of all
rare genetic diseases,» en, Am. J. Hum. Genet., vol. 100, n.° 5, pp. 695-705, mai. de 2017.

C. C. Y. Chung, Hong Kong Genome Project, A. T. W. Chu e B. H. Y. Chung, «Rare disease emerging
as a global public health priority,» en, Front. Public Health, vol. 10, p. 1028 545, out. de 2022.

J. S. Mattick, M. Dinger, N. Schonrock e M. Cowley, « Whole genome sequencing provides better
diagnostic yield and future value than whole exome sequencing,» en, Med. J. Aust., vol. 209, n.° 5,
pp- 197-199, set. de 2018.

J. Lord e D. Baralle, «Splicing in the diagnosis of rare disease: Advances and challenges,» en, Front.
Genet., vol. 12, p. 689892, jul. de 2021.

P. Lopes e J. L. Oliveira, «An innovative portal for rare genetic diseases research: the semantic
Diseasecard,» en, J. Biomed. Inform., vol. 46, n.° 6, pp. 1108—1115, dez. de 2013.

International Rare Disease Research Consortium, International Rare Diseases Research Consortium
Policies Guidelines, https://irdirc.org/wp-content/uploads/2020/05/IRDiRC-Policies—-and~
Guidelines-May-2020.pdf, Accessed: April 1, 2024, 2020.

European Comission, Support for international rare disease research to serve the IRDiRC objectives,
https://cordis.europa.eu/project/id/305207/fr, Accessed: April 1, 2024, 2016.

F. M. Sequeira, «Recuperagdo e visualizacdo de informacdo de Doencas Raras,» tese de mestrado,
Universidade de Aveiro, 2022.

P. Lopes e J. L. Oliveira, « COEUS: “semantic web in a box” for biomedical applications,» en, J. Biomed.
Semantics, vol. 3, n.2 1, p. 11, dez. de 2012.

51

https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en
https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en
https://www.orpha.net/pdfs/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf
https://www.orpha.net/pdfs/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf
https://irdirc.org/wp-content/uploads/2020/05/IRDiRC-Policies-and-Guidelines-May-2020.pdf
https://irdirc.org/wp-content/uploads/2020/05/IRDiRC-Policies-and-Guidelines-May-2020.pdf
https://cordis.europa.eu/project/id/305207/fr

	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	Introduction
	Motivation
	DiseaseCard Problems
	Improvements on Diseasecard to elaborate on next topic

	Objectives
	Outline

	Context and State of Art
	Existent Databases
	OMIM
	PubMed
	HGNC
	UniProt
	Ensembl
	GenBank

	Existent Tools
	Orphanet
	Malacards
	DO
	GARD
	NORD
	NCBI

	Previous DiseaseCard Version
	Summary
	Comparison Matrix

	System Analysis Requirements
	Requirements Gathering
	Functional Requirements
	Comprehensive Disease Information per Source
	Flexible and Accessible Search Capability for Diseases
	Versatile Source Oriented and Article Oriented Search
	Daily Information Updates
	Disable or Enable Article and Source for Maintenance Oversight for Administrator
	Real-Time System Information for Administrator
	Accessible CRUD Methods for Administrator
	Graphical System Representation for Administrator
	Secure Administrative Authentication for Administrator

	Actors
	User
	Admin

	Personas
	User
	Main Admin
	Medical Admin

	Use Cases
	Non-functional Requirements
	Modular Architecture for Feature Expansion
	Ease of Deployment
	Accessibility (All users including colourblind)
	Cross-Platform Accessibility (Mobile and Web)
	Rapid Information Retrieval
	Low Latency
	Scalability for Growing Disease Base

	Visual Identity

	Domain Model, Architecture and Deployment Diagram
	Domain Model
	Disease Family
	Disease
	Source
	Article
	Admin
	Feedback

	System Architecture
	Primary Architecture
	Secondary Architecture
	Third Architecture

	API Documentation
	Admin
	Authentication
	Disease Family
	Disease
	Source
	Article
	Feedback

	Web Scraping
	Initial Method
	Improved Method
	Temporary Method

	Aggregation Algorithm
	Data Security
	Role Based Access Control

	Deployment Architecture

	Results
	Diseasecard
	Homepage
	Browse Page
	Disease Family Page
	Article Page
	Feedback Option

	DiseaseCard Admin
	DashBoard
	Manage Data
	Monitorize Endpoints
	Manage Medical Admins
	Medical Admin View

	DiseaseCard App
	Disease Search
	Disease Info
	Article View

	Summary

	Analysis of Results and Future Works
	Project Summary
	Features and Benefits of the Product
	Limitations of the Product
	Sources

	Potential Future Improvements
	Client-Side
	Admin-Side
	Back-end Related

	Referências

